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Abstract We consider the TASEP on Z with two blocks of particles having different jump
rates. We study the large time behavior of particles’ positions. It depends both on the jump
rates and the region we focus on, and we determine the complete process diagram. In par-
ticular, we discover a new transition process in the region where the influence of the random
and deterministic parts of the initial condition interact.

Slow particles may create a shock, where the particle density is discontinuous and the
distribution of a particle’s position is asymptotically singular. We determine the diffusion
coefficient of the shock without using second class particles.

We also analyze the case where particles are effectively blocked by a wall moving with
speed equal to their intrinsic jump rate.

Keywords TASEP · Airy processes · Shock fluctuations · Random matrices

1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) on Z. This is one of
the basic one-dimensional interacting stochastic particle systems that, despite its simplicity,
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is full of interesting features. It consists of particles moving to the right by jumps of length
one. The jumps happen at a given rate (the clocks of different particles are independent),
and the particles are subject to the exclusion constraint—no site can be occupied by more
than one particle. This model can also be seen as a growing interface with gradient given
by the particle density; it belongs to the KPZ (Kardar-Parisi-Zhang) universality class of
growth models. Recently the fluctuation properties of the TASEP and related models have
been studied extensively using the techniques from random matrix theory [20, 28, 31, 32].
See also [13, 36, 37] for more recent developments on the case where particles can hop in
both directions.

In previous works [4, 6, 8, 30] we analyzed the large time t behavior of particles’ posi-
tions for some non-random initial conditions and uniform jump rate (say equal to one). For
example, if particles start from 2Z− then the large time macroscopic density is given by

�([ξ t], t) =

⎧
⎪⎨

⎪⎩

1/2, if ξ < 0,

(1 − ξ)/2, if ξ ∈ [0,1],
0, if ξ > 1.

(1.1)

For large time t , the correlation length scales as t2/3 and the fluctuations scale as t1/3. Under
an appropriate scaling limit, the joint distributions of particles’ positions are governed by a
process which depends on the density gradient: (a) for ξ < 0, it is the Airy1 process, (b) for
ξ ∈ (0,1) it is the Airy2 process, and at ξ = 0 it is the Airy2→1 transition process, see [8].
Similarly, one can consider the joint distributions of the current at different positions instead
of the positions of different particles—the limit processes are unchanged.

In this paper we consider a small variation of the above situation, which however shows
a number of new nontrivial phenomena. Instead of setting the jump rate to 1 for all the
particles, we modify the jump rate of the first M particles and set it equal to α > 0.

There are a few cases to consider. For example, for 0 < α < 1/2 the first (slow) particles
generate a shock where the macroscopic particle density changes discontinuously from 1/2
to 1 − α. The fluctuations on the left of the shock are Airy1-distributed on the t1/3 scale,
while inside the jam region they are GUE(M)-distributed on the t1/2 (diffusion) scale, see
the body of the paper for details.1 Also, the distribution of a particle’s position in the shock
region has a singularity.

When α reaches 1/2, the macroscopic density becomes constant (it is equal to 1/2 every-
where), but the fluctuations are different. In the simplest case of M = 1 slow particle, by
Burke’s theorem [11], our initial condition is equivalent to the deterministic one on Z−
(even sites are occupied as before) and to the product of Bernoulli measures with density
1/2 on Z+. Thus, for α = 1/2 there is a transition region where the influence of the initial
randomness becomes relevant, but it can not be seen macroscopically.

On Fig. 2 we present the whole process diagram.2 One of the goals of the present paper
is to derive the large time fluctuations’ behavior in all of its regions.

Another situation we consider is M = ∞ and α = 2. Under t1/2-scaling, the speed α

particles effectively act as a wall moving with speed 1. The following n “normal” particles
then become like Brownian motions with the first one being reflected off the wall and the
following ones being reflected off each other. The large time fluctuations are then given by

1Here GUE(M) stands for the Gaussian Unitary Ensemble of M × M random matrices.
2A bit like a phase diagram, but in our case instead of phases and phase transition we have limit processes
and transition processes.
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the antisymmetric GUE(M) process (for fixed time it was characterized in [22], see also
[14, 15]). This is also closely related to the asymptotics of a certain Markovian dynamics
for two-dimensional interlacing particle systems with a wall, see Sect. 2.3 of [38] and [9].
Using the relation between last passage directed percolation with exp(1) random variables
and TASEP, one can predict that there should be a relation between the maximum process
for the largest eigenvalue of the Dyson’s Brownian Motion and systems of nonintersecting
paths with a wall. This relation will be made more precise in [7].

Our arguments are based on deriving suitable determinantal expressions for the quanti-
ties of interest and analyzing the resulting (Fredholm) determinants asymptotically. In most
cases, a mathematically rigorous argument of that kind would require the evaluation of the
asymptotics of the kernel under the determinant, as well as some control over the decay
of the kernel at infinity. This last part is often viewed as a technicality, and we omit tail
estimates in the present paper.

In this determinantal approach, the main difficulty typically lies in deriving an integral
representation for the kernel before the limit transition; evaluating the asymptotics is often
quite straightforward via the standard steepest descent analysis. However, in the shock case
mentioned above, we faced a new effect—in the large time limit the kernel diverged. We
had been puzzled by this difficulty for a while, and we view finding the modification of the
kernel that solved the problem as our main technical novelty.

Outline The rest of the paper is organized as follows. In Sect. 2 we explain the macroscopic
picture and describe the process diagram. Then we state the results for the different parts
of the diagram, which are proven in Sects. 4–6. In Sect. 3 we obtain the determinantal
correlation structure and the associated kernel with a couple of specializations. Finally, in
Sect. 7 we consider the reflecting wall situation.

2 Model and Results

The continuous time TASEP on Z is a model of interacting particle systems in which at
every instant at most one particle occupy a site in Z. Particles jump by 1 to the right with
a given jump rate provided the arriving site is empty. As a consequence, particles do not
overtake each other. Hence, we can assign labels to particles, say particle n has position at
time t equal to xn(t). We also denote by vn the jump rate of particle n. Our convention is to
consider particles labeled from right to left, i.e., xn(t) > xn+1(t) for any time t . We denote
by yn = xn(0) the starting position of particle n (non-random).

We always start with a finite number of particles, but since the interactions are due only
to the blocking from the right, it is effectively equivalent to have the index n varying over N.
Limiting cases when n varies over Z can also be treated as appropriate limits of finite sys-
tems. For particle-dependent jump rates, we derived in [4] the general formula for the joint
distribution of any subsets of particles at time t . This result is restated as Proposition 4.

In order to apply this result, we need to set the initial positions yk’s and the jump rates
vk’s. In this paper we consider the first M particles to have jump rate α and the rest having
unit jump rate:

yj = 2(M − j), vj =
{
α, 1 ≤ j ≤ M,

1, j > M.
(2.1)

The choice of setting the last α-particle at the origin is due to a simplification in the specific
situation where we will take the M → ∞ limit.
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2.1 Macroscopic Description for 0 < α < 1

The fluctuation results will depend on the macroscopic behavior, so let us first describe
it. By macroscopic scale we mean when spatial directions are linearly scaled with time t .
On that scale, for α ∈ (0,1), the effect of finitely many slow particle(s) is equivalent to
having a starting density of rate 1 particles on N equal to 1 − α. A particularly important
case is M = 1, for which by Burke’s Theorem [11], the initial condition is exactly equal to
alternating deterministic on Z− and Bernoulli-(1 − α) on N.

Let �(ξ, τ ) be the macroscopic density of particles,

�(ξ, τ ) = lim
t→∞ P(there is a particle at [ξ t] at time τ t). (2.2)

Then, the average current from TASEP dynamics through position [ξ t] at time τ t is given
by �(1 − �), from which it follows that � satisfies the Burgers’ equation [29]

∂τ� + ∂ξ (�(1 − �)) = 0. (2.3)

To get the large-time macroscopic density one has to solve (2.3) with initial condition

�(ξ,0) =
{

1/2, for ξ < 0,

1 − α, for ξ ≥ 0.
(2.4)

The solution at τ = 1 is as follows. For α ∈ [0,1/2), it has a discontinuity at ξ = α − 1/2
(in this case, one needs to use a conservation law to obtain this solution, see e.g. [39]),

�(ξ,1) =
{

1/2, if ξ < (α − 1/2),

1 − α, if ξ > (α − 1/2),
(2.5)

while for α ∈ [1/2,1]

�(ξ,1) =
⎧
⎨

⎩

1/2, if ξ ≤ 0,

(1 − ξ)/2, if ξ ∈ [0,2α − 1],
1 − α, if ξ ≥ 2α − 1.

(2.6)

So, for large t , the density of particles in the lattice-scale,

ρ(x, t) = P(there is a particle at x at time t) ∼= �(x/t,1), (2.7)

see Fig. 1 for an illustration.
A consequence is that the number of particles moving with average speed α is around

(1 − α)t/2 for α ≤ 1/2 and (1 − α)2t for 1/2 ≤ α < 1. Also, the macroscopic position at
time t of particle n = [νt] is

xα(ν) := lim
t→∞ t−1

E(x[νt](t))

=
⎧
⎨

⎩

α − ν/(1 − α), if ν ∈ (0,min{ 1−α
2 , (1 − α)2}),

1 − 2
√

ν, if ν ∈ ((1 − α)2, 1
4 ),

1/2 − 2ν, if ν > max{ 1−α
2 , 1

4 },
(2.8)

where the second case occurs only for α ∈ (1/2,1].
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Fig. 1 Particles’ density for
large t : (a) for 0 < α < 1/2,
(b) for 1/2 < α < 1. The big dot
is the position of the right-most
slow particle

Fig. 2 Process diagram. The
black thick line is the shock. On
the dashed line there is the
Airy2→1 process. At the white
dot there is the Airy2→1,M,κ
process. At the curved solid line
the process is the AiryDBM→2

2.2 Process Diagram

As we have seen, there are different types of macroscopic behavior for the density. For
example, when α ∈ (1/2,1), there are two plateaux in the density joined by a linearly de-
creasing part. The plateaux are of different nature, since only the right one is influenced by
the α-particles. So, the limit process of particles’ position varies depending on which part
of the process diagram the parameter are in, see Fig. 2.

For keeping the presentation of the results as simple as possible, the results stated in the
remainder of this section are the particularization to fixed time. However, the results hold
in greater generality and span from the fixed time to tagged particle problem. The general
statements are contained in the following sections.

(1) Dyson’s Brownian Motion region. For fixed time t let us consider particles with num-
ber n = [νt] with ν ∈ (0,min{ 1−α

2 , (1 − α)2}), i.e., we are in the right plateau with density
1 − α. In the diffusion scaling limit, the M th α-particle has GUE(M) distributed fluctua-
tions. So, to get a non-trivial limit for the particles in the jammed region we have to look
at fluctuations with respect to the macroscopic behavior on the t1/2 scale. Therefore, we set
the rescaled process as

Xt(ν) := x[M+νt](t) − xα(ν)t

−σ(ν)t1/2
,

(2.9)
σ 2(ν) = α(1 − ν/(1 − α)2),

and xα(ν) = α + ν/(1 − α), see (2.8). Then

lim
t→∞Xt(ν) = DBM(− lnσ(ν)). (2.10)
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Fig. 3 Illustration of the shock.
The continuous line is the
position of particles, the dashed
line is the macroscopic position
of particles inside the jam, while
the dotted line would be the
position without the α-particle.
See [19] for an animation of the
TASEP with and without a slow
particle

DBM is the stationary process of eigenvalues of β = 2 Dyson’s Brownian Motion on M ×M

Hermitian matrices, see Lemma 12 for a definition. The change in time − lnσ(ν) is simply
due to the non-stationarity of Xt(ν), while DBM is stationary. The complete statement is in
Proposition 13.

(2) Shock region, M = 1. Consider now α ∈ (0,1/2), where there is a macroscopic shock
traveling to the left with speed (α − 1/2), and consider the important case of Bernoulli-
(1 − α) on Z+ as initial condition, that is M = 1. So, if a particle is already inside the jam,
then it has t1/2 fluctuations with respect to the dashed line in Fig. 3. On the other hand,
particles can not move faster than they would in absence of the α-particles, in which case
they fluctuate on a t1/3 scale around the dotted line in Fig. 3. So, on the t1/2 scale, the dotted
line acts as a sharp cut-off and the result is the following.

Proposition 1 Consider one slow particle with 0 < α < 1/2 and the scaling

n = 1 − α

2
t + ηt1/2,

x(ξ) = 1

2
t − 2n − ξ t1/2.

(2.11)

For ξ > 0,

lim
t→∞ P(xn(t) ≥ x(ξ)) = 1√

2πσ 2

∫ ξ+ξc

−∞
dy exp(−y2/2σ 2), (2.12)

where

σ 2 = α(1 − 2α)

2(1 − α)
, ξc = 1 − 2α

1 − α
η. (2.13)

For ξ < 0:

lim
t→∞ P(xn(t) ≥ x(ξ)) = 0. (2.14)

Geometrically, ξ = 0 are points on the dotted line, while ξ = ξc are on the dashed line of
Fig. 3. This proposition is proved in Sect. 4.2.

More precisely the picture is as follows: On the t1/2 scale, the random interface given by
{(xn(t), n), n ≥ 1} looks like a plot of a (non-homogeneous) Ornstein-Uhlenbeck process
with average given by the dashed line. When the trajectory hits the dotted line, it sticks to it
and does not fluctuate anymore. We identify this hitting position as the shock. This picture is
consistent with Proposition 1. A consequence of Proposition 1 is that the shock position has
Gaussian fluctuations (for M = 1) with diffusion coefficient D = α(1−α)

1/2−α
. This is the content
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of Proposition 16. The main novelty in this result is that we do not start with Bernoulli initial
conditions on both Z− and Z+ with two different densities and, more interestingly, we do
not have to introduce second class particles to define the shock position, as it was the case
for example in [12, 16, 17].

(3) Transitions and Airy processes. The last two new results related to the process dia-
gram are the transition point (the white dot in Fig. 2) and the transition line between DBM
and the Airy2 process (along the curved line in Fig. 2). The other remaining regions, are
the ones where the influence of the α-particles is not present, so one clearly gets the same
results obtained in [8].

The limit processes are different, but the scaling limit can be presented in the same way
for all the cases. Indeed, consider n ∼ νt with

ν > (1 − α)/2, for α ∈ (0,1/2),

ν ≥ (1 − α)2, for α ∈ [1/2,1).
(2.15)

Then, the rescaled process for fixed time t is given by

Xt(τ ) := x[M+νt−2τ t2/3](t) − xα(ν − 2τ t−1/3)t

−t1/3
. (2.16)

The new transition process is at the macroscopic point given by ν = 1/4 and with α =
1
2 (1 + κt−1/3). In Theorem 19 of Sect. 5 we prove that

lim
t→∞Xt(τ ) = Sv A2→1,M,κSv (τ/Sh) (2.17)

with Sv = 2−1/3, Sh = 2−5/3, and τ 	→ A2→1,M,κ (τ ) is given in Definition 18.
The second transition process is at the line ν = (1 −α)2, for α ∈ (1/2,1). In Theorem 22

of Sect. 5 we prove that

lim
t→∞Xt(τ ) = Sv ADBM→2(τ/Sh) (2.18)

with Sv = α2/3

(1−α)1/3 , Sh = (1−α)2

α
S2

v , and τ 	→ ADBM→2(τ ) is given in Definition 21. The
process ADBM→2(τ ) has appeared before, see [1, 2, 10, 23] (with sometimes the time di-
rection inverted).

Finally, to complete the process diagram we state what the limiting processes are in the
α-independent cases in Sect. 6, where one has either the Airy1, the Airy2 or the Airy2→1

process. The fixed time t results were already contained in [5].

2.3 TASEP with a Reflecting Wall

The last result of this paper is of a different nature, since we do not have slow particles.
Instead, consider the case α = 2 but with M = ∞. Then the particle that started at the
origin moves with average speed 1 and has fluctuations of order t1/3. The other “normal”
particles, have jump rate 1 and are blocked by the last α-particle, but in contrast to the jam
situation they do not have the tendency of filling up the gap rapidly, since the “wall” moves
with their natural speed. Let us call particle n the one starting at −2n. Particle 1 fluctuates
on a t1/2 scale, that means that from its perspective the last α-particle is like a moving
blocking wall. Viewed from the “wall”, particle 1 does essentially a reflected random walk
in continuous time, and particle 2 does a random walk reflected on particle 1 and so on.
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Consider a sequence of particle numbers ni (not rescaled with time) and times ti = τi t .
Since particles at time ti are approximately at position ti (speed one), we define the rescaled
random variables

i 	→ Xt(i) = xni
(ti) − ti

−√
2ti

. (2.19)

We can compute the correlation functions of Xt(i)’s only if they are space-like, property
denoted by ∼ and defined by

(n1, t1) ∼ (n2, t2) ⇐⇒ (n1, t1) ≺ (n2, t2) or (n2, t2) ≺ (n1, t1) (2.20)

with

(n1, t1) ≺ (n2, t2) ⇐⇒ n1 ≤ n2, t1 ≥ t2, and are not identical. (2.21)

Then, our result proven in Sect. 7 is the following.

Theorem 2 For any given m = 1,2, . . . , let us choose m space-like couples (ni, τi),
1 ≤ i ≤ m. Let ρ

(m)
t (ξ1, . . . , ξm) be the m-point correlation functions of Xt(1), . . . ,Xt (m).

Then

lim
t→∞ρ

(m)
t (ξ1, . . . , ξm) = det[KaGUE((ni, θi), ξi; (nj , θj ), ξj )]1≤i,j≤m (2.22)

where θj = ln(τi).

The kernel KaGUE is an extension of the antisymmetric GUE minor kernel [22] defined
as follows (see Lemma 24 for an integral representation).

Definition 3 The extended kernel KaGUE is defined by

KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2)

= 2√
π

e−ξ2
1
∑

�∈I

sign(�)e−(θ2−θ1)�

2n2+1−2�(n2 + 1 − 2�)!Hn1+1−2�(ξ1)Hn2+1−2�(ξ2) (2.23)

where sign(�) := 1 if � ≥ 1, sign(�) := −1 if l ≤ 0, and the interval of summation I is

I = {1,2, . . . , 
(n2 + 1)/2�}, if (n1, θ1) �≺ (n2, θ2),

I = {−∞, . . . ,−1,0}, if (n1, θ1) ≺ (n2, θ2).
(2.24)

The functions Hk(x) are the standard Hermite polynomials with normalization
∫

R
dxHk(x)×

Hj(x)e−x2 = δk,j k!2k
√

π .

In the fixed-n specialization of the KaGUE kernel, i.e., for n1 = n2 = n, this kernel be-
comes the one of a system of N non-intersecting Brownian motions (rescaled to become
stationary) as follows:

(a) if n = 2N − 1, the Brownian motions have the reflecting wall at the origin,
(b) if n = 2N , the Brownian motions have the absorbing wall at the origin.

These processes were introduced and studied in [25, 26] but the kernels were not explicitly
provided. Also, the kernel for n = 2N was obtained in the study of N Brownian excur-
sions [35].
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3 Determinantal Structure and Kernels

We start by stating the general formula and then particularize to our choice of jump rates.
Consider particles numbered by 1,2, . . . , with particle j starting from site yj and jumping
to the right with hopping rate vj . The joint distributions of particle positions are obtained
as a specialization a(t) = t, b(t) = 0 of Proposition 3.1 in [4]. To state the result, consider
the set of numbers {v1, . . . , vn} and let {u1 < u2 < · · · < uν} be their different values, with
αk being the multiplicity of uk . Then we define a space of functions in x,

Vn = span{xlux
k ,1 ≤ k ≤ ν,0 ≤ l ≤ αk − 1}. (3.1)

The next statement holds for finite sequences of (distinct) events in the (n, t) variables which
are space-like.

Proposition 4 Let us consider particles starting from y1 > y2 > · · · and denote xj (t) the
position of j th particle at time t . Take a sequence of particles and times which are space-
like, i.e., a sequence of m couples S = {(nk, tk), k = 1, . . . ,m | (nk, tk) ≺ (nk+1, tk+1)}. The
joint distribution of their positions xnk

(tk) is given by

P

(
m⋂

k=1

{xnk
(tk) ≥ ak}

)

= det(1 − χaKχa)�2({(n1,t1),...,(nm,tm)}×Z) (3.2)

where χa((nk, tk), x) = 1(x < ak). Here K is the kernel with entries

K((n1, t1), x1; (n2, t2), x2) = −φ((n1,t1),(n2,t2))(x1, x2) + K((n1, t1), x1; (n2, t2), x2) (3.3)

where

K((n1, t1), x1; (n2, t2), x2) =
n2∑

k=1

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2),

(3.4)

φ((n1,t1),(n2,t2))(x1, x2) = 1

2π i

∮

�0,�v

dw

w

e(t1−t2)w

wx1+n1−x2−n2

1[(n1,t1)≺(n2,t2)]
(w − vn1+1) · · · (w − vn2)

.

With �v we mean {vn1+1, . . . , vn2}. The contour �0,�v is any anticlockwise oriented loop that
includes 0 and the elements of �v. The functions �

n,t
n−j , j ≥ 1 are given by

�
n,t
n−j (x) = 1

2π i

∮

�0,�v

dw

w

etw

wx−yj +n−j

∏n

k=1(w − vk)
∏j

k=1(w − vk)
. (3.5)

The functions {�n,t
n−j }1≤j≤n are characterized by the two conditions:

〈�n,t
n−j ,�

n,t
n−k〉 :=

∑

x∈Z

�
n,t
n−j (x)�

n,t
n−k(x) = δj,k, 1 ≤ j, k ≤ n, (3.6)

and span{�n,t
n−j (x),1 ≤ j ≤ n} = Vn.

The notation 1
2π i

∮

�K
dzf (z) here and below means that the integration path �K goes

around the poles of f (z) which are in the set K .
In our situation, the orthogonalization gives the following result.
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Lemma 5 For n ≤ M , the n orthogonal functions are

�
n,t
n−j (x) = 1

2π i

∮

�0,1

dw

w

(w(w − α))n−j etw

wx+2n−2M
,

�
n,t
n−j (x) = 1

2π i

∮

�α−1

dv
(1 + v)x+2n−2M

et(v+1)((v + 1)(v + 1 − α))n−j+1
(2v + 2 − α),

(3.7)

where j = 1, . . . , n. For n ≥ M + 1, we have two cases:

(a) for j = M + 1, . . . , n,

�
n,t
n−j (x) = 1

2π i

∮

�0,1

dw

w

(w(w − 1))n−j etw

wx+2n−2M
,

�
n,t
n−j (x) = 1

2π i

∮

�0

dv
(1 + v)x+2n−2M

et(v+1)(v(1 + v))n−j+1
(1 + 2v),

(3.8)

(b) for j = 1, . . . ,M ,

�
n,t
n−j (x) = 1

2π i

∮

�0,α

dw

w

(w(w − 1))n−M(w(w − α))M−j etw

wx+2n−2M
,

�
n,t
n−j (x) = 1

(2π i)2

∮

�α−1

dv

∮

�0,v

dz
(1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)
(3.9)

× (1 + z)x+2n−2M

et(z+1)(z(1 + z))n−M

1

((v + 1)(v + 1 − α))M−j+1
.

Our original derivation of the orthogonal functions was based on the known orthogonal
functions for the case where all the particles have the same jump rate (see [6, 30]), and
then by employing Gram-Schmidt orthogonalization procedure. A similar procedure could
be used also for more than one jump rate different from one, but we did not do it. However,
once the orthogonal functions are determined, it is easier to verify the orthogonality by direct
computation, and this is what we do below.

Proof of Lemma 5 The formulas for �
n,t
n−j (x) is just a simple substitution of (2.1) into (3.5).

Notice that for x < 2M − 2n, �
n,t
n−j (x) = 0. Therefore,

∑

x∈Z

�
n,t
n−j (x)�

n,t
n−k(x) =

∑

x≥2M−2n

�
n,t
n−j (x)�

n,t
n−k(x), (3.10)

in which x-dependent terms under the integrals are given by

∑

x≥2M−2n

(
1 + v

w

)x+2n−2M

= w

w − (1 + v)
(3.11)

provided |w| > |1+v|. With these preparations we can prove the orthogonal relation needed
by the theorem.
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Case n ≤ M : We have

〈�n,t
n−j ,�

n,t
n−k〉 = 1

(2π i)2

∮

�α−1

dv

∮

�0,1+v

dw
(w(w − α))n−ketw(2v + 2 − α)

((v + 1)(v + 1 − α))n−j+1et(v+1)

1

w − (v + 1)

= 1

2π i

∮

�α−1

dv (2v + 2 − α)((v + 1)(v + 1 − α))j−k−1

= 1

2π i

∮

�0

dz zj−k−1 = δk,j , (3.12)

where we used the fact that after summing over x the pole at w = 0 disappeared (since
n− j ≥ 0) and then the change of variable z = (v +1)(v +1−α) with dz = (2v +2−α)dv.

Case n ≥ M + 1: We have to do four computations, depending on whether j, k are larger
or smaller than M .

Case j, k ≥ M +1: We get 〈�n,t
n−j ,�

n,t
n−k〉 = δk,j by the same computation as in the n ≤ M

case but with α replaced by 1.
Case j, k ≤ M : Also in this case, after summing over x the pole at w = 0 disappears but

instead there is a simple pole at w = z + 1. This can be easily integrated out and we get

〈�n,t
n−j ,�

n,t
n−k〉 = 1

(2π i)2

∮

�α−1

dv

∮

�0,v

dz

× ((z + 1)(z + 1 − α))M−k

((v + 1)(v + 1 − α))M−j+1

(1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)

= 1

2π i

∮

�α−1

dv ((v + 1)(v + 1 − α))j−k−1(2v + 2 − α)

= δj,k (3.13)

where we used that after integrating out the w = z + 1 pole, the variable z does not have a
pole at z = 0 anymore.

Case j ≥ M + 1, k ≤ M : In this case, the sum over x and then the residue at w = v + 1
leads to

〈�n,t
n−j ,�

n,t
n−k〉 = 1

2π i

∮

�0

dv (1 + 2v)(v(v + 1))j−M−1

× ((v + 1)(v + 1 − α))M−k = 0 (3.14)

because there is no pole at v = 0 anymore.
Case j ≤ M,k ≥ M + 1: It is slightly more tricky to check the orthogonalization in this

case. After the sum over x and the residue at w = z + 1, we get

〈�n,t
n−j ,�

n,t
n−k〉 = 1

(2π i)2

∮

�α−1

dv
2v + 2 − α

((v + 1)(v + 1 − α))M−j+1

×
∮

�0,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
. (3.15)

This time, both poles at z = 0 and z = v contribute. One notices that the integrand in z has
four poles in the whole complex plane: z = −1,0,−1 − v, v. By the change of variable
z = −1 − w, we have the identity
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∮

�0,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
=

∮

�−1,−1−v

dw
(w(w + 1))M−k(1 + 2w)

(w − v)(w + v + 1)

= 1

2

∮

�−1,0,−1−v,v

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)
. (3.16)

Since M − k ≤ −1, the integrand is O(1/z3) at z → ∞, thus the integral (3.16) is zero,
which implies then 〈�n,t

n−j ,�
n,t
n−k〉 = 0. �

For our analysis we will not focus on the first M − 1 particles, since it corresponds (up to
a time-change) to the cases analyzed in previous works. Here we’ll focus only on particles’
positions of the ones with jump rate 1. This is the reason why in what follows we write the
kernel only for n1, n2 ≥ M . With the expressions of Lemma 5 we can rewrite the kernel
(3.3) in the following way.

Proposition 6 For n1, n2 ≥ M + 1, the kernel has the following expression

K((n1, t1), x1; (n2, t2), x2)

= −φ̂((n1,t1),(n2,t2))(x1, x2)

+ K̂(1)((n1, t1), x1; (n2, t2), x2) + K̂(2)((n1, t1), x1; (n2, t2), x2) (3.17)

where

φ̂((n1,t1),(n2,t2)(x1, x2) = 1

2π i

∮

�0

dw

w

e(t1−t2)w(w(w − 1))n1−n2

wx1+2n1−x2−2n2

× 1[(n1,t1)≺(n2,t2)], (3.18)

and

K̂(1)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)2

∮

�0

dv

∮

�0,−v

dw

w

et1w(w(w − 1))n1−M

wx1+2n1−2M

× (1 + v)x2+2n2−2M

et2(v+1)(v(v + 1))n2−M

(1 + 2v)

(w + v)(w − v − 1)
(3.19)

and

K̂(2)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)3

∮

�α−1

dv

∮

�0,v

dz

∮

�0,α−1−v

dw

w

× et1w(w(w − 1))n1−M(w(w − α))M

wx1+2n1−2M

(1 + z)x2+2n2−2M

et2(z+1)(z(z + 1))n2−M

× 1

((v + 1)(v + 1 − α))M

× (1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)(w − 1 − v)(w + 1 − α + v)
. (3.20)

This proposition will be used in Sect. 5.
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Proof of Proposition 6 For all ni ≥ M , we have vni+1 = 1, thus (3.4) implies that
φ((n1,t1),(n2,t2))(x1, x2) in (3.4) equals φ̂((n1,t1),(n2,t2))(x1, x2) plus the pole at v = 1 (we return
to it shortly). For the rest, we divide the sum over k in (3.4) into the sum over [1, . . . ,M]
and the sum over [M + 1, . . . , n2]. We define

K(1)((n1, t1), x1; (n2, t2), x2) =
n2∑

k=M+1

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2) (3.21)

and

K(2)((n1, t1), x1; (n2, t2), x2) =
M∑

k=1

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2). (3.22)

Remark that �
n2,t2
n2−k(x) = 0 for k ≥ n2 + 1. Therefore we can extend the sum in (3.21)

to infinity. Then, if we take v small enough and w large enough, satisfying |v(v + 1)| <

|w(w − 1)|, we can take the sum inside the integrals. Explicitly, we get

K(1)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)2

∮

�0

dv

∮

�0,1

dw

w

(w(w − 1))n1−n2et1w

wx1+2n1−2M

× (1 + v)x2+2n2−2M(1 + 2v)

et2(v+1)

∞∑

k=M+1

(w(w − 1))n2−k

(v(v + 1))n2−k+1
, (3.23)

where the integration contours have to satisfy |v(v + 1)| < |w(w − 1)|. Then, using

∞∑

k=M+1

(w(w − 1))n2−k

(v(v + 1))n2−k+1
= (w(w − 1))n2−M

(v(v + 1))n2−M

1

(w − (1 + v))(w + v)
(3.24)

we obtain (3.19) plus the pole coming from w = v + 1. This contribution cancels exactly
with the contribution of the pole at v = 1 of φ.

We now show that K(2) = K̂(2). For the computation of K(2), remark that the formula
for �

n2,t2
n2−k(x) used for k ≤ M gives exactly zero for k ≥ M + 1. The reason is that the pole

at v = α − 1 disappears. Therefore we can use the integral representations for k ≤ M and
extend the sum to k = ∞. Then, provided that |(v + 1)(v + 1 − α)| ≤ |w(w − α)|, we can
exchange the sum and the integral, which gives

K(2)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)3

∮

�0,α

dw

w

∮

�α−1

dv

∮

�0,v

dz
(w(w − 1))n1−Met1w

wx1+2n1−2M

× (1 + z)x2+2n2−2M

et2(z+1)(z(z + 1))n2−M

(1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)

×
∞∑

k=1

(w(w − α))M−k

((v + 1)(v + 1 − α))M−k+1
. (3.25)
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Then we substitute

∞∑

k=1

(w(w − α))M−k

((v + 1)(v + 1 − α))M−k+1

= (w(w − α))M

((v + 1)(v + 1 − α))M

1

(w − 1 − v)(w + v + 1 − α)
(3.26)

into (3.25) to get (3.20). The condition |(v + 1)(v + 1 − α)| ≤ |w(w − α)| is satisfied for
any w ∈ �0,α if we choose v sufficiently close to α − 1. Both poles w = α − 1 − v and
w = 1 + v lie inside �0,α . Thus, K(2) is given by K̂(2) but with the poles for w = 0, α −
1 − v,1 + v. Consider the contribution coming from the pole at w = v + 1, which is a
simple residue. Computing this residue one immediately sees that the pole at v = α − 1 is
not present anymore, thus the integral is zero. �

In the applications we’ll use some special cases of the kernel too. In particular for M = 1
and M = ∞ (with ni − M finite). Let us write the kernel explicitly in these cases.

3.1 Special Case: M = 1

Corollary 7 For M = 1, the kernel has the following expression. For any n1, n2 ≥ 1,

K((n1, t1), x1; (n2, t2), x2)

= −φ̂((n1,t1),(n2,t2))(x1, x2)

+ 1

(2π i)2

∮

�0

dv

∮

�0,−v

dw

w

et1w(w − 1)n1−1

wx1+n1−1

× (1 + v)x2+n2−1

et2(v+1)vn2−1

(1 + 2v)

(w + v)(w − v − 1)

+ 1

2π i

∮

�0

dw
et1w(w − 1)n1−1

wx1+n1

× 1

2π i

∮

�0,α−1

dv
(1 + v)x2+n2−1

et2(v+1)vn2−1

1 + 2v

(v + 1 − α)(v + α)
, (3.27)

with φ̂ as in Proposition 6.

Proof of Corollary 7 One simply substitutes for M = 1 in the expression of Proposition 6.
Then, the integral over v around α − 1 is computed easily since it is a simple pole. �

The product structure of K(2) (the last term in (3.27)) is straightforward if one looks back at
its definition (3.22). So, for M = 1 we have a rank-one perturbation.

3.2 Special Case: M = ∞
We want to get the M → ∞ limit but with ni − M finite. Therefore, consider the kernel
K((M + n1, t1), x1; (M + n2, t2), x2) and take the M → ∞ limit. We define

K∞((n1, t1), x1; (n2, t2), x2) := lim
M→∞

K((M + n1, t1), x1; (M + n2, t2), x2), (3.28)

and the limit kernel K∞ is given as follows.
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Corollary 8 For n1, n2 ≥ 1, we have

K∞((n1, t1), x1; (n2, t2), x2)

= −φ̂((n1,t1),(n2,t2))(x1, x2)

+ 1

(2π i)2

∮

�0

dv

∮

�0,−v

dw
et1w(w − 1)n1

wx1+n1+1

(1 + v)x2+n2

et2(v+1)vn2

× 1 + 2v

(w + v)(w − v − 1)

+ −1

(2π i)2

∮

�0

dw

∮

�0,α−1−w

dv
et1w(w − 1)n1

wx1+n1+1

(1 + v)x2+n2

et2(v+1)vn2

× 1 + 2v

(v + w + 1 − α)(w − v − α)
(3.29)

with φ̂ as in Proposition 6.

Proof of Corollary 8 The only not straightforward term is K(2). For M → ∞ the pole at
w = 0 disappears and one just integrates out the simple pole at w = α − 1 − v. The result
does not depend on M anymore, namely

−1

(2π i)2

∮

�0

dv

∮

�0,v

dz
(1 + z)x2+n2

et2(z+1)zn2

× et1(α−1−v)(α − 2 − v)n1

(α − 1 − v)x1+n1+1

1 + 2z

(z − v)(z + v + 1)
. (3.30)

Changing the variable w = α − 1 − v and then renaming z with v we get the result of the
statement. �

Notice that for α = 1 the combination of the two integrals in (3.29) is just the residue
at w = −v, which is the kernel for alternating initial conditions already obtained in [4, 6].
Moreover, for n1 = n2 = n, the kernel can also be seen as rank-n perturbation of the kernel
without the K(1) contribution. This kernel will be used explicitly in Sect. 7.

3.3 Modified Kernel useful for the Shock Region

For the asymptotic analysis in the case of finite M and α < 1/2, the shock situation, there is
an interval around the shock for which the kernel has a diverging part in the t → ∞ limit.
This, however, does not mean that the system is ill-defined, because the distribution of the
particles’ positions is given by the Fredholm determinant of the kernel, not by the kernel
itself. Indeed, we obtained a new kernel Kshock such that the Fredholm determinants agree.
More importantly, in the new kernel (which is not a trivial conjugation of K) the divergence
disappears. To define Kshock let us introduce the following function. Set

Q
n,t
n−j,w(x) = 1

(2π i)2

∮

�α−1

dv

∮

�w

dz
(1 + z)x+2n−2M

et(z+1)(z(1 + z))n−M

× 1

((v + 1)(v + 1 − α))M−j+1

(1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)
, (3.31)
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where w is either 0,−1, v. Then, for j = 1, . . . ,M , we have

�
n,t
n−j (x) = Q

n,t
n−j,0(x) + Q

n,t
n−j,v(x). (3.32)

Define the new kernel Kshock for n1, n2 ≥ M as follows:

Kshock((n1, t1), x1; (n2, t2), x2)

= −φ̂((n1,t1),(n2,t2))(x1, x2)

+ K̂(1)((n1, t1), x1; (n2, t2), x2)

+ K
(2)

shock((n1, t1), x1; (n2, t2), x2) (3.33)

where K
(2)

shock is defined as follows:

K
(2)

shock((n1, t1), x1; (n2, t2), x2)

=
M∑

k=1

�
n1,t1
n1−k(x1)Q

n2,t2
n2−k,v(x2)

+
M∑

k=1

�
n1,t1
n1−k(x1)Q

n2,t2
n2−k,−1(x2)1[(n1,t1)≺(n2,t2)]. (3.34)

This means that for (n1, t1) ≺ (n2, t2) instead of the poles at z = 0, v in (3.9) we have the
poles at z = −1, v, and otherwise only the pole at z = v. The same changes in the poles will
then occur in the triple integral representation (3.20). This kernel will be useful for α < 1/2
because of the following Proposition.

Proposition 9 For given a1, . . . , am ∈ Z, we have

det(1 − χaKχa)�2({(n1,t1),...,(nm,tm)}×Z)

= det(1 − χaKshockχa)�2({(n1,t1),...,(nm,tm)}×Z), (3.35)

where χa((nk, tk), x) = 1(x < ak).

Thus, by (3.2) the joint distribution of particles’ positions can be computed with the
kernel Kshock instead of K .

To prove Proposition 9 we’ll use the following relations.

Lemma 10 For n1, n2 ≥ M . Then

∑

x1

Q
n1,t1
n1−j,−1(x1)K

(1)((n1, t1), x1; (n2, t2), x2) = Q
n2,t2
n2−j,0(x2), (3.36)

∑

x1

Q
n1,t1
n1−j,−1(x1)K

(2)((n1, t1), x1; (n2, t2), x2) = 0, (3.37)

∑

x1

Q
n1,t1
n1−j,−1(x1)φ

((n1,t1),(n2,t2))(x1, x2) = Q
n2,t2
n2−j,−1(x2). (3.38)
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Proof of Lemma 10 Recall the definition of K(1) and K(2), see (3.21), (3.22):

K(p)((n1, t1), x1; (n2, t2), x2) =
∑

k∈Ip

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2) (3.39)

with I1 = [M + 1, . . . , n2] and I2 = [1, . . . ,M]. Then, we have to compute

〈Qn1,t1
n1−j,−1,�

n1,t1
n1−k〉 ≡

∑

x∈Z

Q
n1,t1
n1−j,−1(x)�

n1,t1
n1−k(x), (3.40)

so some of the computations are very close to the ones we made for the orthogonalization
in Lemma 5.

Let us start with (3.37), i.e., 1 ≤ k ≤ M . Then, the expression of Q is like � in (3.9) but
with �0,v replaced by �−1. Thus, compare with (3.13), we get

〈Qn1,t1
n1−j,−1,�

n1,t1
n1−k〉

= 1

(2π i)2

∮

�α−1

dv

∮

�−1

dz
((z + 1)(z + 1 − α))M−k

((v + 1)(v + 1 − α))M−j+1

× (1 + 2z)(2v + 2 − α)

(z − v)(z + v + 1)
= 0 (3.41)

because the pole at z = −1 vanishes for k ≤ M . This implies (3.37).
Next we prove (3.36), i.e., k ≥ M + 1. It is similar as before but with the � taken from

(3.8) instead of (3.9). Then, compare with (3.15), we have

〈Qn1,t1
n1−j,−1,�

n1,t1
n1−k〉

= 1

(2π i)2

∮

�α−1

dv

∮

�−1

dz
(z(z + 1))M−k(1 + 2z)

(z − v)(z + v + 1)

× 2v + 2 − α

((v + 1)(v + 1 − α))M−j+1
. (3.42)

Thus, LHS of (3.36) is given by

n2∑

k=M+1

〈Qn1,t1
n1−j,−1,�

n1,t1
n1−k〉�n2,t2

n2−k(x2). (3.43)

We use the fact that �
n,t
n−k(x) = 0 if k > n to extend the sum to infinity. Then, provided

|w(w + 1)| < |z(z + 1)| we can take the sum inside the integrals; explicitly we get

(3.43) = 1

(2π i)3

∮

�α−1

dv

∮

�−1

dz

∮

�0

dw
(1 + 2w)(1 + w)x2+n2−M

et2(w+1)wn2−M

× (1 + 2z)

(z − v)(z + v + 1)

2v + 2 − α

((v + 1)(v + 1 − α))M−j+1

×
∑

k≥M+1

(w(w + 1))k−M−1

(z(z + 1))k−M
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= 1

(2π i)2

∮

�α−1

dv

∮

�0

dw
(1 + w)x2+n2−M

et2(w+1)wn2−M

1

((v + 1)(v + 1 − α))M−j+1

× (1 + 2w)(2v + 2 − α)

(w − v)(w + v + 1)
, (3.44)

where we integrated the pole at z = w arising from the sum over k. This is however nothing
else than Q

n2,t2
n2−j,0(x2).

Finally, we need to verify (3.38). One divides the sum over x1 in [0,1, . . .) and
(. . . ,−2,−1]. Then use

∑

x1≥0

(
1 + z

w

)x1

= w

w − 1 − z
if |1 + z| < |w|,

∑

x1<0

(
1 + z

w

)x1

= − w

w − 1 − z
if |1 + z| > |w|.

(3.45)

The two sums can be taken inside the integrals provided the contours satisfy once
|w| > |1 + z| and the other time |w| < |1 + z|. The integrands are the same up to a sign,
which means that the net result of the sum is just the residue at w = 1+z. Then (3.38) easily
follows. �

With this result we can now proceed to the proof of Proposition 9.

Proof of Proposition 9 In this proof we let n stand for a pair (n, t) for short and write like
Kn1,n2(x1, x2) to represent ((n1, t1), (n2, t2)) block of K . Let us define

Sn1,n2(x1, x2) = δn1,n2δt1,t2

M∑

k=1

�
n1,t1
n1−k(x1)Q

n1,t1
n1−k,−1(x2). (3.46)

Since �
n,t
n−k(x) = 0 for x ≤ 2M − n − k − 1 and Q

n,t
n−k,−1(y) = 0 for y ≥ M − n, it follows

∑M

k=1 �
n,t
n−k(x1)Q

n,t
n−k,−1(x2) = 0 if x1 ≤ M −n−1 or x2 ≥ M −n. Hence Sn,n(x1, x2) = 0 for

x2 ≥ x1, i.e., S is lower triangular with diagonal being zero. Hence to prove the proposition,
it is enough to show

(1 − S)(1 − K) = 1 − K̃. (3.47)

Since S is block-diagonal, the n1, n2 block of (3.47) writes

(1 − S)n1,n1(1 − K)n1,n2 = (1 − Kshock)n1,n2 , (3.48)

which is proven using the result of Lemma 10 as follows. We use the notation K = K(1) +
K(2) below.

Case n1 = n2: Then LHS of (3.48) is

(1 − Sn1,n1)(1 − Kn1,n1) = 1 − Sn1,n1 − Kn1,n1 + Sn1,n1Kn1,n1 . (3.49)

We have Kn1,n1 given by

Kn1,n1 = K(1)
n1,n1

+
M∑

k=1

�
n1,t1
n1−k(Q

n1,t1
n1−k,0 + Q

n1,t1
n1−k,v) (3.50)
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and by Lemma 10

Sn1,n1Kn1,n1 =
M∑

k=1

�
n1,t1
n1−kQ

n1,t1
n1−k,0. (3.51)

Putting together these relations we obtain exactly RHS of (3.48).
Case n1 �= n2 and n1 �≺ n2: LHS of (3.48) is in this case given by

−(1 − Sn2,n2)Kn2,n1 = −Kn2,n1 + Sn2,n2Kn2,n1 . (3.52)

Using

Kn2,n1 = K(1)
n2,n1

+
M∑

k=1

�
n2,t2
n2−k(Q

n1,t1
n1−k,0 + Q

n1,t1
n1−k,v), (3.53)

and

Sn2,n2Kn2,n1 =
M∑

k=1

�
n2,t2
n2−kQ

n1,t1
n1−k,0 (3.54)

we get

−(1 − Sn2,n2)Kn2,n1 = −K(1)
n2,n1

−
M∑

k=1

�
n2,t2
n2−kQ

n1,t1
n1−k,v (3.55)

which is the claimed result.
Case n1 �= n2 and n1 ≺ n2: in this case, LHS of (3.48) is given by

(1 − Sn1,n1)(−Kn1,n2 + φ(n1,n2))

= −Kn1,n2 + φ(n1,n2) + Sn1,n1Kn1,n2 − Sn1,n1φ
(n1,n2). (3.56)

This time Lemma 10 tell us that

Kn1,n2 = K(1)
n1,n2

+
M∑

k=1

�
n1,t1
n1−k(Q

n2,t1
n2−k,0 + Q

n2,t1
n2−k,v),

Sn1,n1Kn1,n2 =
M∑

k=1

�
n1,t1
n1−kQ

n2,t2
n2−k,0,

Sn1,n1φ
(n1,n2) =

M∑

k=1

�
n1,t1
n1−kQ

n2,t2
n2−k,−1.

(3.57)

These relations imply the claimed result. �

3.4 Special Case: M = 1

For later use we explicitly state a corollary of Proposition 9. For M = 1, the extended kernel
K is given in Corollary 7. Proposition 9 tell us that the Fredholm determinant can be also
computed using the modified kernel Kshock, which has the same expression as (3.27) but
with the last term the integration for v is around the poles −1, α − 1 instead of 0, α − 1. In
particular, for (n1, t1) = (n2, t2) = (n, t), the kernel is given as follows.
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Corollary 11 For M = 1, the one-point modified kernel is given by

Kshock((n, t), x; (n, t), y) = Kn,t (x, y) + f (x)g(y), (3.58)

where

Kn,t (x, y) = 1

(2π i)2

∮

�0

dv

∮

�0,−v

dw

w

etw(w − 1)n−1

wx+n−1

(1 + v)y+n−1

et(v+1)vn−1

(1 + 2v)

(w + v)(w − v − 1)

f (x) = 1

2π i

∮

�0

dw
etw(w − 1)n−1

wx+n
(3.59)

g(y) = 1

2π i

∮

�−1,α−1

dv
(1 + v)y+n−1

et(v+1)vn−1

1 + 2v

(v + 1 − α)(v + α)
.

This result, together with Proposition 9 will be employed in proving Proposition 1.

4 Jam Regime

Consider the semi-infinite system with 1 slow particle. By jam regime we mean the following
two situations in which particles with jump rate 1 are slowed down by the slow particles:

(1) for 1/2 ≤ α < 1: at large time t , the macroscopic density is continuous and has a plateau
with density 1 − α. The plateau corresponds to the first (1 − α)2t particles moving with
speed α.

(2) for 0 ≤ α < 1/2: in this case, the slow particle create a macroscopic shock and the
density has a jump from 1/2 to 1 − α. Particles in the region of higher density move
with speed α. The shock has a drift velocity equal to vs = α − 1/2 (i.e., it moves to the
left).

With the results for case (2) we’ll also be able to determine the law and the diffusion
coefficient of the shock without introducing second-class particles.

4.1 Fluctuations in the Speed α Region

For large time t , particles with a particle number n < min{ 1−α
2 , (1−α)2}t will move with the

speed of the slow particles and will be very much correlated with the first M slow particles.
What happens is that the M th particle fluctuates according to the largest eigenvalue of DBM.
Intuitively, then the other particles have jump rate 1, which is strictly larger than α, so that
they fill the gaps more rapidly than if the jump rate would have been α. In doing so, their
fluctuation will be well correlated with the last slow particle, just shifted in time. Therefore
one might expect to see DBM.

Before stating the result, we define the limit object we’ll get in the large time limit. The
matrix-valued (stationary) Ornstein-Uhlenbeck process on M × M hermitian matrices also
known as Dyson’s Brownian Motion, DBM. It is the Markov process with transition density
given by

P (τ1,M1; τ2,M2) = 1

(2π(1 − e−2(τ2−τ1)))M
exp

(

−Tr(M2 − e−(τ2−τ1)M1)
2

2(1 − e−2(τ2−τ1))

)

, (4.1)

for τ2 > τ1, and the reference measure being flat over the independent entries of M , i.e.,
dM = ∏M

i=1 dMi,i

∏
1≤i<j≤M dReMi,j dImMi,j . Its finite-dimensional distributions are given

by the following Fredholm determinant.
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Lemma 12 For any given τ1 < · · · < τm ∈ R, the joint distribution of the largest eigenvalue
of the stationary DBM process are given by

P

(
m⋂

k=1

DBM(τk) ≤ sk

)

= det(1 − χsK
DBMχs)L2({τ1,...,τm}×R) (4.2)

where the kernel is given by

KDBM(τ1, x1; τ2, x2) = −
exp

(− (x2−x1e−(τ2−τ1))2

2(1−e−2(τ2−τ1))

)

√
2π(1 − e−2(τ2−τ1))

1[τ1<τ2]

+
M−1∑

k=1

ek(τ1−τ2)pk(x1)pk(x2)e
−x2

2 /2 (4.3)

where pk(x) = Hk(x/
√

2)π−1/42−k/2(k!)−1/2, and Hk(x) is the standard Hermite polyno-
mial of degree k (see e.g. [27]).

This result can be found in [24] with a slightly different normalization, an extra
√

2 in
the space variable.

Proposition 13 Let π(θ) be a real-valued function on R with |π ′| ≤ 1. Define the scaling

t (θ, T ) = (π(θ) + θ)T ,

n(θ, T ) = M + [(π(θ) − θ)T ], (4.4)

where T is the large parameter. For 0 < n < min{ 1−α
2 , (1 − α)2}t , i.e. for 0 < π(θ) <

min{ 2−α
1+α

, 2−2α+α2

α(2−α)
}θ , we are inside the region of speed α. The rescaled process

XT (θ) = xn(θ,T )(t (θ, T )) − (αt − (n(θ,T )−M)

1−α
)

−σ
√

T
, (4.5)

where σ 2 ≡ α(π(θ) + θ) − α(π(θ)−θ)

(1−α)2 . Then, in the large T limit XT converges to the DBM
process:

lim
T →∞

XT (θ) = DBM(τ (θ)), with τ(θ) := − ln(σ ) (4.6)

in the sense of finite dimensional distributions.

Space-like paths include as particular cases: (a) fixed time with t = T is obtained setting
π(θ) = 1 − θ , and (b) fixed (tagged) particle with n = T by setting π(θ) = 1 + θ . For more
explanations about space-like paths see [4].

Remark 14 In the following proof, as well as in the others on asymptotic analysis, we
present only the most important ingredients. First of all we state explicitly the steep descent
path used for the analysis and the local series expansions around the critical points (from
where the non-vanishing term arises). These two are the building blocks for the convergence
of the kernel on bounded sets, for more details on the procedure see e.g. Lemma 6.1 in [3].
We do not however prove convergence of the Fredholm determinants, for which bounds on
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moderate and large deviations are needed, for a simple example on how to proceed, see
Lemma 6.2 in [3].

Proof of Proposition 13 The result is obtained by analyzing the rescaled and conjugated
kernel

K resc
T (θ1, ξ1; θ2, ξ2) = Conj2

Conj1
σ1T

1/2K((n1, t1), x1; (n2, t2), x2) (4.7)

with ni := n(θi, T ), ti := t (θi , T ), and

xi := αti − ni

1 − α
− ξiσiT

1/2. (4.8)

The conjugation factor is given by Conji := eαti (α − 1)ni /αxi+ni . We use the kernel K in
Proposition 6.

Let us start with φ̂. In this proof, define the notation ai = π(θi) − θi and ui = π(θi) + θi .
Then, with the above scaling, for (n1, t1) ≺ (n2, t2),

φ̂((n1,t1),(n2,t2))(x1, x2) = 1

2π i

∮

�0

dw eTg0(w)+T 1/2g1(w)+g2(w), (4.9)

where

g0(w) = (u1 − u2)(w − α ln(w)) + (a1 − a2)

(

ln(w − 1) + α

1 − α
ln(w)

)

,

g1(w) = (ξ1σ1 − ξ2σ2) ln(w), (4.10)

g2(w) = − ln(w).

The condition (n1, t1) ≺ (n2, t2) means that a2 − a1 ≥ 0 and u1 − u2 ≥ 0 (at least one of the
two inequalities being strict). The critical point for steep descent of g0(w) is at w = α and
as steep descent path we use �0 = {αeiy, y ∈ (−π,π ]}. Indeed,

d

dy
Re(g0(w = αeiy)) = −

(

(u1 − u2) + a2 − a1

|w − 1|2
)

α sin(y) (4.11)

Fig. 4 Steep descents for the
different terms in the kernel. The
path w passes either through α or
at distance εT −1/2 from it
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which is negative for sin(y) > 0 and positive for sin(y) < 0, so the maximum of Re(g0(w))

is at w = α and the path �0 is steep descent.3 By usual steep descent analysis, the relevant
contribution of the integral comes from a δ-neighborhood of w = α. There, we can apply
Taylor series:

g0(w) = g0(α) − y2

2
(σ 2

1 − σ 2
2 ) + O(y3),

g1(w) = g1(α) + iy(ξ1σ1 − ξ2σ2) + O(y2),

g2(w) = − ln(α) + O(y).

(4.12)

Notice that exp(T g0(α)+T 1/2g1(α)) = Conj1/Conj2. Then, deleting the corrections O(· · · )
accounts for an error of order O(T −1/2) times the leading term. The change of variable
y := zT −1/2 implies that the leading term is given by

T −1/2

2π

∫

R

dz exp(−(σ 2
1 − σ 2

2 )z2/2 + iz(ξ1σ1 − ξ2σ2))

= Conj1
Conj2

1

σ1T 1/2

1
√

2π(1 − σ 2
2 /σ 2

1 )

exp

(

− (ξ1 − ξ2σ2/σ1)
2

2(1 − σ 2
2 /σ 2

1 )

)

. (4.13)

Now consider K̂(1). With the above scaling, and after the change of variable v = z − 1,
we get

K̂(1)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)2

∮

�1

dz

∮

�0,1−z

dw
eTf0,1(w)+T 1/2f1,1(w)

eTf0,2(z)+T 1/2f1,2(z)

2z − 1

(w + z − 1)(w − z)w
(4.14)

with

f0,i (w) = ui(w − α ln(w)) + ai

(

ln(w − 1) + α

1 − α
ln(w)

)

,

f1,i (w) = ξiσi ln(w).

(4.15)

Let us look for the critical points of f0,i and the steep descent paths. We have

d

dw
f0,i (w) = 0 ⇐⇒ (w − α)(ui(1 − α)(w − 1) + ai)

w(w − 1)(1 − α)
= 0, (4.16)

that is, the critical points are

ω− = α and ω+,i = 1 − ai

ui(1 − α)
. (4.17)

Using the relation

0 < ai < ui min{(1 − α)/2, (1 − α)2} (4.18)

3For an integral I = ∫

γ dz eTf (z) , we say that γ is a steep descent path if (1) Re(f (z)) is maximum at some
z0 ∈ γ : Re(f (z)) < Re(f (z0)) for z ∈ γ \{z0}, and (2) Re(f (z)) is monotone along γ except at its maximum
point z0 and, if γ is closed, at a point z1 where the minimum of Re(f ) is reached.
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one verifies the following relations:

0 < ω− = α < ω+,i < 1, and ω+,i > 1/2. (4.19)

As steep descent path we choose: �1 = {z = 1 − reiψ, r = 1 − ω+,2} and �0 = {w = αeiϕ}.
Let us check the steep descent property. We have

d

dϕ
Re(f0,1(w)) = −αu1 sin(ϕ)

|w − 1|2 (|w − 1|2 − a1/u1) (4.20)

which is decreasing while moving away from the critical point w = α, since by (4.18) the
term in the parentheses is strictly positive. Also,

d

dψ
Re(−f0,2(z)) = − ru2 sin(ψ)

|z|2
(

|z|2 − α

(

1 − a2

u2(1 − α)

))

(4.21)

which is decreasing while moving away from the critical point z = ω+,2. Indeed, using
(4.18) and (4.19) the term in the parentheses is strictly positive. Hence the integral (4.14) is
of order

Conj1

Conj2

exp(T Re(f0,1(ω−) − f0,1(α)))

exp(T Re(f0,2(ω+,2) − f0,2(α)))
= Conj1

Conj2

exp(T Re(f0,2(α) − f0,2(ω+,2)))

= Conj1

Conj2

exp(−δT ), δ > 0. (4.22)

Indeed, f0,2(ω+,2) > f0,2(α), because ω+,2 > α and d
dz

f0,2(z) > 0 on z ∈ (α,ω+,2). There-
fore in the T → ∞ limit, the contribution of K(1) (conjugated and rescaled) goes to zero.

Finally, we need to consider K̂(2) of Proposition 6. We change the variables v = ṽ − 1
and z = z̃ − 1 in (3.20) and get

K̂(2)((n1, t1), x1; (n2, t2), x2)

= 1

(2π i)3

∮

�α

dṽ

∮

�1,ṽ

dz̃

∮

�0,α−ṽ

dw

w

(w(w − α))M

(ṽ(ṽ − α))M

× (2z̃ − 1)(2ṽ − α)

(z̃ + ṽ − 1)(w − ṽ)(z̃ − ṽ)(w + ṽ − α)

eTf0,1(w)+T 1/2f1,1(w)

eTf0,2(z̃)+T 1/2f1,2(z̃)
. (4.23)

We have the following two contributions:
(a): z̃ around 1. From the above analysis on the steep descent paths, we choose

|ṽ − α| = ε/2 for ε small enough, {w = (α − ε)eiϕ} and {z = 1 − reiψ, r = 1 − ω+,2}.
Since f0,2(ω+,2) > f0,2(α), we can choose ε small enough such that the overall contribution
is Conj1

Conj2
exp(−δ′T ) for some δ′ > 0. Therefore in the T → ∞ limit, this contribution of K̂(2)

(conjugated and rescaled) goes to zero.
(b): z̃ around ṽ. Integrating out the simple pole z̃ = ṽ we get a contribution equal to

1

(2π i)2

∮

�α

dṽ

∮

�0,α−ṽ

dw

w

eTf0,1(w)+T 1/2f1,1(w)

eTf0,2(ṽ)+T 1/2f1,2(ṽ)

× (w(w − α))M

(ṽ(ṽ − α))M

2ṽ − α

(w − ṽ)(w + ṽ − α)
. (4.24)
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The integration paths are now chosen as �α = {|ṽ − α| = RT −1/2} and �0,α−ṽ = {w = (α −
LT −1/2)eiy,L > R}. With the above computations we have that �0,α−ṽ is a steep descent
path, so that its leading contribution comes from a T −1/2 neighborhood of y = 0. There we
can use Taylor series:

f0,i (w) = f0,i (α) + (w − α)2

2α2
σ 2

i + O((w − α)3),

f1,i (w) = f1,i (α) + ξiσi(w − α)

α
+ O((w − α)2),

(w(w − α))M = αM(w − α − 1)M(1 + O((w − α))).

(4.25)

Denoting ṽ = α(1 + V σ−1
1 T −1/2) and w = α(1 + Wσ−1

1 T −1/2) we have that the leading
term of (4.24) for large T is given by

Conj1
Conj2

1

σ1T 1/2

1

(2π i)2

∮

|V |=R

dV

∫

−L+iR
dW

WM

V M

1

W − V

eW2/2+Wξ1

eV 2(σ2/σ1)2/2+V ξ2σ2/σ1
(4.26)

with L > R. By the change of variable W → −W and V → −V we obtain (up to factors
√

2
due to the different space-scaling) the extended Hermite kernel, see (2.13) of [24], which
can then be rewritten in terms of Hermite polynomials. �

4.2 Fluctuations Around the Shock

In this section we consider α < 1/2 and focus around the shock position. We consider the
case of M = 1 slow particle, since it is also physically the more natural situation. Indeed,
the system with one slow particle is equivalent to having stationary initial condition on Z+.
The shock position, which at time t will be around position vst = (α − 1/2)t , fluctuates on
the t1/2-scale. How does it happen? The fluctuations of particles before entering the shock
region live on a t1/3 scale, thus viewed from the t1/2-scale, these particles essentially do not
fluctuate. So, one has some probability that the particle is not inside the shock region, which
will then be very well localized, and if the particle is in the shock region, then it follows
fluctuations of the slow particles. The occurrence of these two distinct intermediate scales
allows us, in particular, to determine the diffusion coefficient of the shock. The result agrees
with the argument in [33] modified appropriately for our situation, see below.

The first result was stated in Proposition 1 and in order to prove it we recall the following
result from [8].

Lemma 15 Consider the kernel without the slow particle, i.e., Kn,t defined in (3.59), and
the rescaling

n = νt, xi = 1

2
t − 2n − ζi t

1/3, with ν > 1/4. (4.27)

Then, uniformly for ζi in a bounded set,

lim
t→∞ t1/3Kn,t (x1, x2) ≡ KA1(ζ1, ζ2), (4.28)

where KA1 is the Airy1 kernel [6, 18, 30].

With ≡ we mean equivalent, since indeed to get a well-defined limit one has to do a
conjugation of the kernel Kn,t .
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It is also known [21] that

F1(2s) = det(1 − KA1)L2((s,∞),dx), (4.29)

with F1 the GOE Tracy-Widom distribution function [34].

Proof of Proposition 1 Let us start with ξ > 0. From Proposition 9 and Corollary 11 we
have

P(xn(t) ≥ x) = det(1 − χxKn,tχx − χxf · gχx)

= det(1 − χxKn,tχx)(1 − (gχx, (1 − χxKn,tχx)
−1χxf )) (4.30)

with Kn,t , f and g being defined in (3.59), and χx = 1(−∞,x). Compare the scaling (2.11)
and (4.27): ν ↔ 1−α

2 +ηt−1/2 and ζi ↔ ξ t1/6. So, for any ξ > 0 we will actually focus on the
upper tail of the Airy1 kernel and of the related distribution, i.e., Kn,t (x, y) → 0 as t → ∞
(with conjugation), and

lim
t→∞ det(1 − χxKn,tχx) = 1. (4.31)

For the second term, we use

(1 − χxKn,tχx)
−1 = 1 + χxKn,tχx(1 − χxKn,tχx)

−1. (4.32)

Thus

(gχx, (1 − χxKn,tχx)
−1χxf )

= (gχx, f ) + (gχx, (1 − χxKn,tχx)
−1χxKn,tχxf ) (4.33)

and the fact that Kn,t → 0 implies then that the last term goes to zero. So

lim
t→∞ P(xn(t) ≥ x) = lim

t→∞ 1 − (gχx, f ) = lim
t→∞(gχ̃x, f ), (4.34)

where χ̃x = 1[x,∞).
In the last step we used the orthogonality between g and f , namely (g, f ) = 1. Under

the scaling (2.11), x(ξ)+ n ∼ 1
2 αt > 0, which means that the pole at v = −1 in the function

g(y) defined in (3.59) vanishes. Therefore,

g(x) = αx+n−1

eαt (α − 1)n−1
(4.35)

and then

(gχ̃x, f ) = 1

2π i

∮

|w|>α

dw et(w−α)

(
(w − 1)α

(α − 1)w

)n−1 ∑

y≥x(ξ)

αy/wy+1

= 1

2π i

∮

|w|>α

dw et(w−α)

(
(w − 1)α

(α − 1)w

)n−1(
α

w

)x(ξ) 1

w − α

≡ 1

2π i

∮

|w|>α

dw eF(w) 1

w − α
. (4.36)
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The steep descent path of F passes by the saddle point at w = α, but since it is a pole we
have just to deform locally on a t−1/2 scale to pass on its right. The leading contribution is
coming from a t−1/2-neighborhood of the w = α. Setting w = α + iyαt−1/2, we get

F(w) = −σ 2y2/2 + iy(ξ + ξc) + O(y3t−1/2). (4.37)

The O(y3t−1/2) term is controlled by the quadratic term, and in the end we obtain

lim
t→∞(gχ̃x, f ) = 1

2π i

∫

R+iε
dy

e−σ 2y2/2+iy(ξ+ξc)

y
, ∀ε > 0

= 1√
2πσ 2

∫ ξ+ξc

−∞
dz exp(−z2/(2σ 2)). (4.38)

Now consider ξ < 0. We first use a probabilistic argument. It is quite clear (by a simple
coupling argument) that

P(xn(t) ≥ x) ≤ P̃(xn(t) ≥ x) (4.39)

where P̃ is the measure of the system without the slow particle. For the system without slow
particle we have the result of Lemma 15, which tells us that

P̃(xn(t) ≥ x) = det(1 − χxKn,tχx) → 0, t → ∞. (4.40)

The reason is that ξ < 0 corresponds to ζi = ξ t1/6 → −∞ as t → ∞. Then (4.40) follows
from the non-degeneracy of the distribution F1 (no mass is lost at −∞). �

It is a bit more natural to look at the fluctuations with respect to the dashed line in Fig. 3.
Then, the result of Proposition 1 rewrites as follows. Let

F(ξ) := lim
t→∞ P(xn=[(1−α)t/2+ηt1/2](t) ≥ αt − n − ξ t1/2). (4.41)

Then, F(ξ) has a jump at ξ = ξc , namely

F ′(ξ) = 1√
2πσ 2

exp(−ξ 2/2σ 2)1[ξ>ξc]

+ δ(ξ − ξc)
1√

2πσ 2

∫ ∞

ξc

dy exp(−y2/2σ 2). (4.42)

This can be used to determine the diffusion coefficient of the shock without having to iden-
tify it with second class particles. When α < 1/2, the macroscopic density has a jump from
1/2 to 1 − α. As we saw in Proposition 13, before the shock the fluctuations becomes as-
ymptotically F1-distributed on a t1/3-scale, while inside the shock region are Gaussian on
the t1/2-scale. Thus the position of the shock itself is localized on the t1/2-scale, see Fig. 3
for an illustration.

The question we want to address is how to determine its law and in particular its diffusion
coefficient. Denote by xshock(t) the position of the shock at time t .

Proposition 16 In the large time limit, the shock is Gaussian distributed with diffusion
coefficient D given by

D = α(1 − α)

1/2 − α
. (4.43)
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In other words,

lim
t→∞ P(xshock(t) ≥ (α − 1/2)t − νt1/2)

= 1√
2πD

∫ ∞

ν

dx exp(−x2/2D). (4.44)

Proof of Proposition 16 To prove the result we first have to understand what Proposition 1
says. Consider the particle with number n and look at position x rescaled as in (2.11). The
condition ξ > ξc means that x is on the left of the dotted line of Fig. 3 by (ξ − ξc)t

1/2.
Moreover, before reaching the shock, particles fluctuate only on a t1/3-scale away from the
dotted line. Thus, for ξ > ξc , xn(t) < x implies that particle n already reached the shock.
On the other hand, if particle n did not reach the shock region yet, then (on the t1/2 scale)
it has to be on the dotted line (can not be farther to the right because of (2.14)). Therefore,
the probability that particle n has not yet reached the shock (i.e. xshock(t) > xn(t)) is equal
to the mass at ξ = ξc . Thus, from (4.42) it follows that

lim
t→∞ P(xshock(t) ≥ (α − 1/2)t − νt1/2)

= 1√
2πσ 2

∫ ∞

(1/2−α)ν/(1−α)

dy exp(−y2/2σ 2)

= 1√
2πD

∫ ∞

ν

dx exp(−x2/2D) (4.45)

after a change of variable. �

Remark 17 The above argument is quite flexible and one could extend to the case of M slow
particles instead of only one. We expect the following. Proposition 1 would be similar up to
the distribution in (2.12) changed from Gaussian into the GUE(M) (the distribution of the
largest eigenvalue of M ×M GUE matrices) and the shock will have a GUE(M)-distribution
with appropriate parameter, by the change of variable as in (4.45).

This result can also be explained with an heuristic argument, following arguments in [33].
In the continuum limit the particle density ρt (x) is described by the viscous Burgers equation
with noise (see (5.37) of [33]),

∂

∂t
ρt (x) + ∂

∂x
(ρt (x)(1 − ρt (x))) = εν

∂2

∂x2
ρt (x) − √

εν
∂

∂x
Jt (x). (4.46)

Here ε is the lattice constant, ν is the diffusion constant and Jt (x) is the random current.
The initial condition is divided into two parts,

ρ0(x) = ρs(x) + √
εξ(x). (4.47)

Here ρs is the deterministic part,

ρs(x) =
{
ρ− := 1/2, x < 0,

ρ+ := 1 − α, x > 0,
(4.48)
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and ξ(x) takes into account the randomness in the initial conditions for x > 0,

〈ξ(x)ξ(x ′)〉 =
{

0, x < 0,

ρ+(1 − ρ+)δ(x − x ′), x > 0.
(4.49)

Note that in our present case there is no randomness for x < 0. The solution to (4.46) is of
the form,

ρt (x) = ρs(x − vst − √
εDb(t)) + O(

√
ε), (4.50)

with b(t) is the standard Brownian Motion. The shock front remains sharp but its center
performs the Brownian Motion. The diffusion coefficient of the shock D is of our interest.

Let us suppose that the initial density fluctuations move with constant velocity towards
the shock and that this is the source of randomness of the shock location. At time t the
particle density fluctuations starting from the region [vst,−vst] have arrived at the shock so
that

∫ −vs t

vs t
ξ(x)dx represents the excess amount of particles comparing to the deterministic

part. Since the difference of the density to the left and the right is ρ+ − ρ−, we would have

√
Db(t) = 1

ρ+ − ρ−

∫ −vs t

vs t

ξ(x)dx. (4.51)

Using (4.49) we get

D = ρ+(1 − ρ+)

ρ+ − ρ−
= α(1 − α)

1/2 − α
. (4.52)

This is the same as (4.43).

5 Transition Processes

In this section, we first focus around the critical parameter α = 1/2 and later on the Airy2 to
DBM(M) transition. For α = 1/2, on a macroscopic scale the density is constant and equal
to 1/2. However, the fluctuations to the left of the origin live on the t1/3 scale, while on the
right they live on the t1/2 scale. Here we consider α−1/2 = O(t−1/3) and n− t/4 = O(t2/3).
We keep M fixed and finite.

As before, we are not obliged to stay on a fixed time, but we can consider a space-
like path described by a function π(θ) with |π ′| ≤ 1. Consider the space-like setting as in
Proposition 13,

t (τ, T ) = (π(θ − τT −1/3) + θ − τT −1/3)T ,

n(τ, T ) = M + [π(θ − τT −1/3) − (θ − τT −1/3)]T ,
(5.1)

with θ > 0 fixed and4 π(θ) = 5θ/3. This ensures that macroscopically we focus at the tran-
sition region, which for α = 1/2 is around n = t/4.

Here we consider α not necessarily exactly equal to 1/2. Instead, let us define

α = 1

2
(1 + κT −1/3). (5.2)

4This does not mean that the function θ̃ 	→ π(θ̃) is identically equal to 5θ̃/3, only that at θ̃ = θ its value is
equal to 5θ/3.
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Then, the rescaled process of particle position is given by

XT (τ) =

⎧
⎪⎨

⎪⎩

xn(t)−( 1
2 t−2(n−M))

−T 1/3 , if n ≥ t/4,

xn(t)−(t−2
√

t (n−M))

−T 1/3 , if n ≤ t/4.

(5.3)

In the large-T limit, XT will converge to a well-defined limit process, A2→1,M,κ , which we
now define.

Definition 18 Let us set

s̃i =
{
si, if τi ≥ 0,

si − τ 2
i , if τi ≤ 0.

(5.4)

The process A2→1,M,κ is the process with m-point distributions at τ1 < τ2 < · · · < τm given
by the Fredholm determinant,

P

(
m⋂

k=1

{A2→1,M,κ (τk) ≤ sk}
)

= det(1 − χsK
trans
M,κ χs)L2({τ1,...,τm}×R) (5.5)

where χs(τk, x) = 1(x > sk). The kernel is defined by

K trans
M,κ (τ1, s1; τ2, s2) = K trans(1)(τ1, s1; τ2, s2) + K

trans(2)
M,κ (τ1, s1; τ2, s2), (5.6)

with

K trans(1)(τ1, s1; τ2, s2)

= − 1√
4π(τ2 − τ1)

exp

(

− (s̃2 − s̃1)
2

4(τ2 − τ1)

)

1[τ2>τ1]

+ 1

(2π i)2

∫

γ̃2

dw2

∫

γ̃1

dw1
ew3

2/3+τ2w2
2−s̃2w2

ew3
1/3+τ1w2

1−s̃1w1

2w2

(w1 − w2)(w1 + w2)
, (5.7)

and

K
trans(2)
M,κ (τ1, s1; τ2, s2)

= 1

(2π i)3

∮

�κ

du

∫

γ2

dw2

∫

γ1

dw1
ew3

2/3+τ2w2
2−s̃2w2

ew3
1/3+τ1w2

1−s̃1w1

× 2w2

(w2 − u)(w2 + u)(w1 − u)

(
w1 − κ

u − κ

)M

. (5.8)

Here γ̃2, γ2 : eπ i/3∞ → e−π i/3∞, γ̃1, γ1 : e−2π i/3∞ → e2π i/3∞, and �κ goes around only the
pole at u = κ anticlockwise. Moreover, −γ̃2 ⊂ γ̃1, and γ1, γ2 passes on the left of �κ (see
Fig. 5 for an illustration).

Theorem 19 The process XT defined in (5.3) converges to the process A2→1,M,κ , more
precisely

lim
T →∞

XT (τ) = Sv A2→1,M,κSv (τ/Sh) (5.9)
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Fig. 5 Illustration of the
integration paths defining the
kernel K trans

M,κ

in the sense of finite-dimensional distributions. The scaling coefficients Sh and Sv are given
by

Sv =
(

4θ

3

)1/3

, Sh = 4

5 − 3π ′(θ)
S2

v . (5.10)

In the fixed time case, t = T , we have π(θ) = 1 − θ and π(θ) = 5θ/3, from which
θ = 3/8, i.e., Sv = 2−1/3 and Sh = 2−5/3.

Remark 20 When M = 0 we have K
trans(2)
M,κ ≡ 0 and the transition process is the Airy2→1,

A2→1, discovered in [8]:

A2→1,0,κ (τ ) ≡ A2→1(τ ). (5.11)

Proof of Theorem 19 To prove the result, we have to analyze the large-T limit of the kernel
in Proposition 6 under the following scaling:

ti = 8θ

3
T − τi(π

′(θ) + 1)T 2/3,

ni = M + 2θ

3
T − τi(π

′(θ) − 1)T 2/3,

xi = 1

2
ti − 2(ni − M) − ŝiT

1/3,

(5.12)

where

ŝi =
{
si, if τi ≥ 0,

si − τ 2
i SvS

−2
h , if τi ≤ 0.

(5.13)

Higher order in the development of π(θ − τiT
−1/3) are irrelevant since they corresponds to

a T −1/3 perturbation of π ′(θ).
Then, we have to consider the rescaled and conjugated kernel

K resc
T (τ1, s1; τ2, s2) := Conj2

Conj1

T 1/3K((n1, t1), x1; (n2, t2), x2) (5.14)

with Conji := eti /2(−1/2)ni−M(1/2)−(xi+ni−M). We need to show that

lim
T →∞

K resc
T (τ1, s1; τ2, s2) = S−1

v K trans
M,κSv

(τ1/Sh, s1/Sv; τ2/Sh, s2/Sv). (5.15)

The first two terms of the kernel (3.17) are independent of α and their sum is the kernel
without slow particles. This kernel was already analyzed in great detail in [8] with the slight
difference that the space-like setting introduced in [4] was not known yet. However, at the
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level of asymptotic analysis there are no relevant changes. Thus here we just indicate the
key steps.

Let us first consider K̂(1) defined in (3.19). After the change of variable v = ṽ − 1 it
writes

1

(2π i)2

∮

�1

dṽ

∮

�0,1−ṽ

dw
2ṽ − 1

w(w − ṽ)(w + ṽ − 1)

eTf0(w)+T 2/3f1,1(w)+T 1/3f2,1(w)

eTf0(ṽ)+T 2/3f1,2(ṽ)+T 1/3f2,2(ṽ)
(5.16)

with

f0(w) = 8θ

3

(

w + 1

4
ln((w − 1)/w)

)

,

f1,i (w) = −τi(π
′(θ) + 1)w − τi(π

′(θ) − 1) ln(w − 1)
(5.17)

+ 1

2
(3 − π ′(θ)) ln(w),

f2,i (w) = ŝi ln(w).

From the analysis of Proposition 4 of [8] we have that the steep descent paths in (5.16) are
chosen as illustrated in Fig. 6. Next, the Taylor expansion around the double critical point
of f0(w) , which is at w = 1/2, are given by

f0(w) = f0(1/2) − 32θ

3

(w − 1/2)3

3
+ O((w − 1/2)4),

f1,i (w) = f1,i (1/2) − τi(5 − 3π ′(θ))(w − 1/2)2 + O((w − 1/2)3),

f2,i (w) = f2,i (1/2) + 2̂si(w − 1/2) + O((w − 1/2)2).

(5.18)

The leading contribution to the kernel comes from the T −1/3-neighborhood of the critical
point. The conjugation terms are just the value of the exponential factor evaluated at the
critical point. The O(· · · ) term accounts into an error O(T −1/3) smaller than the leading
one. Then, after change of variable

w = 1

2
+ 1

2
w1T

−1/3/Sv, ṽ = 1

2
+ 1

2
w2T

−1/3/Sv, (5.19)

we get the final result

lim
T →∞

Conj2

Conj1

T 1/3K̂
(1)
T ((n1, t1), x1; (n2, t2), x2)

= S−1
v

(2π i)2

∫

γ̃2

dw2

∫

γ̃1

dw1
ew3

2/3+τ2w2
2/Sh−̂s2w2/Sv

ew3
1/3+τ1w2

1/Sh−̂s1w1/Sv

2w2

(w1 − w2)(w1 + w2)
. (5.20)

Consider now the α-dependent term, K̂(2) defined in (3.20). After the change of variable
v = ṽ − 1 and z = z̃ − 1, (3.20) becomes

1

(2π i)3

∮

�α

dṽ

∮

�1,ṽ

dz̃

∮

�0,α−ṽ

dw
(2z̃ − 1)(2ṽ − α)

w(z̃ − ṽ)(z̃ + ṽ − 1)(w − ṽ)(w + ṽ − α)

×
(

w(w − α)

ṽ(ṽ − α)

)M
eTf0(w)+T 2/3f1,1(w)+T 1/3f2,1(w)

eTf0(z̃)+T 2/3f1,2(z̃)+T 1/3f2,2(z̃)
. (5.21)
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Fig. 6 Steep descents for (a)
K̂(1) and (b) K̂(2) . They satisfies
π/4 < q < q ′ < π/2,
π/4 < q ′′, q ′′′ < π/2 and the
local modifications around the
critical point at 1/2 are all only
on the T −1/3 scale

The leading term again comes from the T −1/3-neighborhood of 1/2. After the change of
variables

w = 1

2
+ 1

2
w1T

−1/3/Sv,

z̃ = 1

2
+ 1

2
w2T

−1/3/Sv, (5.22)

ṽ = 1

2
+ 1

2
uT −1/3/Sv

and controlling the error terms as usual, we get

lim
T →∞

Conj2

Conj1

T 1/3K̂
(2)
T ((n1, t1), x1; (n2, t2), x2)

= S−1
v

(2π i)3

∮

�κ

du

∫

γ2

dw2

∫

γ1

dw1

× 2w2

(w2 − u)(w2 + u)(w1 − u)

(
w1 − Svκ

u − Svκ

)M

× ew3
2/3+τ2w2

2/Sh−̂s2w2/Sv

ew3
1/3+τ1w2

1/Sh−̂s1w1/Sv

. (5.23)

Finally, concerning the integration paths, from the local structure around the critical point,
see Fig. 4, we obtain the conditions illustrated in Fig. 5. �

There is still one region where the α and M dependence occurs in Fig. 2. This is the
transition between the Airy2 process and DBM. This is present for α ∈ (1/2,1) when n ∼
(1 − α)2t , or in terms of (θ,π(θ)), it occurs for

π(θ) = 2 − 2α + α2

α(2 − α)
θ. (5.24)

Consider the scaling (5.1) with the condition (5.24) and define the rescaled process as

XT (τ) = xn(t) − (t − 2
√

t (n − M))

−T 1/3
. (5.25)

In the large-T limit XT converges to the following limit process.
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Definition 21 The process ADBM→2 is the process with m-point distributions at τ1 < τ2 <

· · · < τm given by the Fredholm determinant,

P

(
m⋂

k=1

{ADBM→2(τk) ≤ sk}
)

= det(1 − χsKADBM→2χs)L2({τ1,...,τm}×R) (5.26)

where χs(τk, x) = 1(x > sk). The kernel is defined by

KADBM→2(τ1, s1; τ2, s2)

= −exp
(− ((s2−τ2

2 )−(s1−τ2
1 ))2

4(τ2−τ1)

)

√
4π(τ2 − τ1)

1[τ2>τ1]

+ 1

(2π i)2

∫

γ2

dw2

∫

γ1

dw1
ew3

2/3+τ2w2
2−(s2−τ2

2 )w2

ew3
1/3+τ1w2

2−(s1−τ2
1 )w1

(
w1

w2

)M 1

w1 − w2
. (5.27)

Here γ2 : eπ i/3∞ → e−π i/3∞, γ1 : e−2π i/3∞ → e2π i/3∞. Moreover, γ1, γ2 pass on the left of
0 and they do not cross.

With this definition, let us state the result.

Theorem 22 The process XT defined in (5.25) converges to the process ADBM→2, more
precisely

lim
T →∞

XT (τ) = Sv ADBM→2(τ/Sh) (5.28)

in the sense of finite-dimensional distributions. The scaling coefficients Sh and Sv are given
by

Sv =
(

2θα

(2 − α)(1 − α)

)1/3

, Sh = 2α−1

1 + π ′(θ) + 1−π ′(θ)

(1−α)2

S2
v . (5.29)

Proof of Theorem 22 The first part of the proof is in complete analogy to the one of The-
orem 19, with the main difference being that the critical point is at α instead of 1/2 (this
explain why instead of κ we get 0). We get the following expression (with s̃i = si − τ 2

i )

−exp(− (s̃2−s̃1)2

4(τ2−τ1)
)√

4π(τ2 − τ1)
1[τ2>τ1] + 1

(2π i)2

∫

γ2

dw2

∫

γ1

dw1
ew3

2/3+τ2w2
2−s̃2w2

ew3
1/3+τ1w2

1−s̃1w1

1

w1 − w2

+ 1

(2π i)3

∮

�0

du

∫

γ2

dw2

∫

γ1

dw1
ew3

2/3+τ2w2
2−s̃2w2

ew3
1/3+τ1w2

1−s̃1w1

1

(w2 − u)(w1 − u)

(
w1

u

)M

. (5.30)

Using the identities

1

(w2 − u)(w1 − u)
= 1

w1 − w2

(
1

w2 − u
− 1

w1 − u

)

(5.31)
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and

1

w − u
= 1

w

∑

n≥0

(u/w)n, if |u| < |w| (5.32)

we compute the integral over u, which has a simple pole when n = M−1, letting to (5.27). �

A priori one might want to modulate the slow particle rate like in (5.2) but around some
α instead of 1/2. This is however not a relevant change, since in a neighborhood of the curve
in Fig. 2, any point can be reached by fixing α and then choosing τ to get the desired value
of n/t or by choosing τ and then modulating α.

Up to a change in the time direction, the kernel KADBM→2 appeared in the context of
sample covariance matrices [2] (for τ1 = τ2 = τ ), and the extended version in TASEP with
step initial conditions [23], directed percolation with two set of parameters [10], Brownian
Motions with outliers [1].

By looking at the diagram of Fig. 2 it is quite apparent that one should have the following
limits:

lim
κ→∞ A2→1,M,κ (τ ) = A2→1(τ ),

lim
v→∞ A2→1,M,κ (τ + v) = 21/3 A1(τ/22/3),

lim
v→∞ lim

κ→∞ A2→1,M,κ (τ − v) = A2(τ ),

lim
κ→∞ A2→1,M,κ (τ − κ) = ADBM→2(τ ),

lim
v→∞ ADBM→2(τ + v) = A2(τ ).

(5.33)

6 Regions where the Slow Particles do not Matter

For completeness, we describe what happens in the region where the presence of slow par-
ticle is irrelevant. In the region where the density of particles is constant, the fluctuation of
particles’ positions are described asymptotically by the Airy1 process. If the density of parti-
cles is decreasing (linearly in our case), then one has the Airy2 process, and in the transition
region where the density changes from constant to linearly decreasing, the process is the
Airy2→1 process. The computations are essentially the same as in [8], but easily extended to
the setting of space-like paths. The only difference is that one has to control the new term
coming from K̂(2).

Introduce the scaling on space-like paths described by a function π(θ) with |π ′| ≤ 1:

t (τ, T ) = (π(θ − τT −1/3) + θ − τT −1/3)T ,

n(τ, T ) = M + [π(θ − τT −1/3) − (θ − τT −1/3)]T .
(6.1)

Case 1, n > max{ 1−α
2 ,1/4}t , i.e. π(θ) > max{ 3−α

1+α
, 5

3 }θ : The rescaled process

XT (τ) = xn(t) − ( 1
2 t − 2(n − M))

−T 1/3
(6.2)

converges in the T → ∞ limit to the Airy1 process, A1,

lim
T →∞

XT (τ) = Sv A1(τ/Sh), (6.3)



Two Speed TASEP 971

where Sv and Sh are coefficients given by

Sv = (π(θ) + θ)1/3, Sh = 4

5 − 3π ′(θ)
S2

v . (6.4)

Case 2, α ∈ (1/2,1] and n ∈ ((1 − α)2,1/4)t , i.e. 5
3θ > π(θ) > 2−2α+α2

α(2−α)
θ : The rescaled

process

XT (τ) = xn(t) − (t − 2
√

t (n − M))

−T 1/3
(6.5)

converges in the large-T limit to the Airy2 process, A2,

lim
T →∞

XT (τ) = Sv A2(τ/Sh), (6.6)

where Sv and Sh are coefficients given by

Sv = (π(θ) + θ)1/3

(
π(θ) − θ

π(θ) + θ

)−1/6(

1 −
√

π(θ) − θ

π(θ) + θ

)2/3

,

Sh =
2
(
1 −

√
π(θ)−θ

π(θ)+θ

)−1

(1 − π ′(θ))
(

π(θ)−θ

π(θ)+θ

)−1 + (1 + π ′(θ))
S2

v .

(6.7)

Case 3, α ∈ (1/2,1] and n ∼ t/4, i.e. π(θ) = 5
3θ : The rescaled process is given by

XT (τ) =

⎧
⎪⎨

⎪⎩

xn(t)−( 1
2 t−2(n−M))

−T 1/3 , if n ≥ t/4,

xn(t)−(t−2
√

t (n−M))

−T 1/3 , if n ≤ t/4.

(6.8)

XT converges in the large-T limit to the Airy2→1 process, A2→1,

lim
T →∞

XT (τ) = Sv A2→1(τ/Sh), (6.9)

where Sv and Sh are coefficients given by

Sv = (4θ/3)1/3, Sh = 4

5 − 3π ′(θ)
S2

v . (6.10)

7 Blocking Wall Regime

In this section we study the case when M = ∞ and α = 2, so that the mean speed of the
particles starting form 2N (called α-particles) is 1, which is equal to the jump rate of particles
starting from 2Z− (called normal particles). We want to describe the large time behavior of
a finite number of normal particles. For large time t , the α-particles fluctuate on a t1/3 scale,
i.e., on a t1/2 scale their behavior is essentially deterministic. t1/2 is however the typical
scale of fluctuations of the normal particles, which perform random walks except for being
blocked by their right-neighbor. Thus, one expects that for large time, our system should be
related to a set of non-intersecting Brownian motions with some particular condition at the
origin (like absorption or reflection).
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Theorem 2 stated in Sect. 2 is a direct consequence of the determinantal structure together
with the following convergence of K∞ (defined in Corollary 8) to the kernel KaGUE.

Proposition 23 Let

ti = τi t, xi = ti − ξi(2ti )
1/2. (7.1)

Then,

lim
t→∞

A1

A2
(2t1)

1/2K∞((n1, t1), x1; (n2, t2), x2)

= KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2), (7.2)

where θi = ln(τi), with the conjugation factor Ai = e−ti (tτi/2)ni/2(−2)ni τ
1/2
i , and KaGUE

given in (2.23).

Before proving the result, let us present an integral representation of the antisymmetric
GUE minor kernel, since it is in that form that we obtain the result.

Lemma 24 The antisymmetric GUE minor kernel has the following integral representation
(after conjugation). Let τi := eθi and ε > 0. Then

KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2)
B2

B1

= −2
√

τ1

2π i

∫

iR+ε

dw e(τ1−τ2)w2−2(ξ1
√

τ1−ξ2
√

τ2)w 1

wn2−n1
1[(n1,θ1)≺(n2,θ2)]

− 2
√

τ1

2π i

∫

iR+ε

dw e(τ1−τ2)w2−2(ξ1
√

τ1+ξ2
√

τ2)w (−1)n2+1

wn2−n1
1[(n1,θ1)≺(n2,θ2)]

+ 2
√

τ1

(2π i)2

∮

�0

dw2

∫

iR+ε

dw1
ew2

1τ1−2ξ1
√

τ1w1

ew2
2τ2−2ξ2

√
τ2w2

(
1

w1 − w2
+ 1

w1 + w2

)
w

n1
1

w
n2
2

(7.3)

with the paths non-crossing, i.e., |w2| < ε, and Bi = 2ni eθi (ni+1)/2.

Proof of Lemma 24 We use the following two integral representations for the Hermite poly-
nomials Hn(x),

Hn(x) = 2n

i
√

π
ex2

∫

iR+ε

dw ew2−2xwwn,

Hn(x) = n!
2π i

∮

�0

dz e−(z2−2xz)z−(n+1),

(7.4)

as well as the identities (with 0 < q < 1) which can be found in [24, 27]

1
√

π(1 − q2)
exp

(

− (x − qy)2

1 − q2

)

= e−x2
∞∑

k=0

Hk(x)Hk(y)qk

√
π2kk! ,

∫ ∞

x

dy e−y2
Hn(y) = e−x2

Hn−1(x),

Hn(x) = (−1)nHn(−x).

(7.5)



Two Speed TASEP 973

Then, for (n1, θ1) �≺ (n2, θ2), we get (extending the sum to ∞ because the extra terms are
identically zero) that KaGUE((n1, θ1), ξ1; (n2, θ2), ξ2) is given by

2n1

2n2

4

(2π i)2

∮

�0

dz

∫

iR+ε

dw
ew2−2ξ1w

ez2−2ξ2z

wn1+1

zn2+2

∑

�≥1

(
z2eθ1

w2eθ2

)�

. (7.6)

Now, by the change of variables z = w2e
θ2/2 = w2

√
τ2 and w = w1e

θ1/2 = w1
√

τ1 we obtain

(7.6) = B1

B2

4
√

τ1

(2π i)2

∮

�0

dw2

∫

iR+ε

dw1
ew2

1τ1−2ξ1
√

τ1w1

ew2
2τ2−2ξ2

√
τ2w2

w
n1+1
1

w
n2+2
2

∑

�≥1

(
w2

w1

)2�

. (7.7)

Performing the sum over �,

∑

�≥1

(
w2

w1

)2�

= w2
2

w2
1 − w2

2

for |w2| < |w1|, (7.8)

and replacing in (7.7) one obtains (7.3).
Now consider (n1, θ1) ≺ (n2, θ2). Assume the following identity (proven below)

Fn1(ξ1) := 2n1τ
(n1+1)/2
1

2n2τ
(n2+1)/2
2

2
√

τ1

2π i

∫

iR+ε

dw e(τ1−τ2)w2−2(ξ1
√

τ1−ξ2
√

τ2)w 1

wn2−n1

= 2√
π

e−ξ2
1

n2+1∑

�=−∞

e−(θ2−θ1)�/2

2n2+1−�(n2 + 1 − �)!Hn1+1−�(ξ1)Hn2+1−�(ξ2). (7.9)

Then, the first two terms of (7.3) are equal to

2√
π

e−ξ2
1

n2+1∑

�=−∞

e−(θ2−θ1)�/2Hn1+1−�(ξ1)

2n2+1−�(n2 + 1 − �)!
× (Hn2+1−�(ξ2) + (−1)n2+1Hn2+1−�(−ξ2)) (7.10)

and using the symmetry/antisymmetry properties of the Hermite polynomials, see (7.5), we
get a zero contribution for all odd �. From this follows the result. It remains to show (7.9).
We prove it by iteration, starting with n1 = n2. The Gaussian integral gives

2
√

τ1

2π i

∫

iR+ε

dw e(τ1−τ2)w2−2(ξ1
√

τ1−ξ2
√

τ2)w

= exp(− (ξ1−ξ2
√

τ2/τ1)2

1−τ2/τ1
)√

π(1 − τ2/τ1)

= 2
e−ξ2

1√
π

n2+1∑

�=−∞

Hn2+1−�(ξ1)Hn2+1−�(ξ2)(τ2/τ1)
n2+1−�/2

2n2+1−�(n2 + 1 − �)! (7.11)

where we used (7.5) with q = √
τ2/τ1 and replaced k by n2 + 1 − �. Next, notice that the

function F in (7.9) satisfies
∫ ∞

x

dyFn1(y) = Fn1−1(x). (7.12)
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Fig. 7 Steep descent paths used for the different terms, with ρ = 1 − ε(t/2)−1/2. (a) Is for term (1); (b) For
term (2) and (3a); (c) For term (3b) in case τ1 < τ2; (d) For term (3b) in case τ1 > τ2

Thus, to get Fn2 we have to integrate n2 − n1 times Fn2 . This is easily made using the

integration formula in (7.5) applied to e−ξ2
1 Hn2+1−�(ξ1) just n2 − n1 times. This leads just to

the shift in the index of the Hermite polynomials in (7.11). �

Proof of Proposition 23 We prove that under the scaling (7.1)

lim
t→∞

C1

C2
(2t1)

1/2K∞((n1, t1), x1; (n2, t2), x2) = (7.3) (7.13)

where θ(τ ) = ln(τ ), with the conjugation factor Ci = e−ti (t/2)ni /2(−1)ni . The kernel K∞ is
given in Corollary 8.

(1) Term coming from φ̂. We have

−φ̂((n1,t1),(n2,t2))(x1, x2)

= − 1

2π i

∮

�0

dw

w

(
w − 1

w

)n1−n2

etg0(w)+t1/2g1(w), (7.14)

with

g0(w) = f0,1(w) − f0,2(w), f0,i (w) = τi(w − ln(w)),

g1(w) = f1,1(w) − f1,2(w), f1,i (w) = ξi

√
2τi ln(w).

(7.15)

Consider τ1 > τ2 (the case τ1 = τ2 and n1 < n2 is pretty easy). As steep descent path we can
use �0 = {w = ρeiφ,φ ∈ (−π,π ]} for any ρ > 0, since Re(w − ln(w)) = Re(w) − ln(ρ).
The critical point of g0 is at w = 1 and there the Taylor series are

g0(w) = g0(1) + 1

2
(τ1 − τ2)(w − 1)2 + O((w − 1)3),

g1(w) = g1(1) + (ξ1
√

τ1 − ξ2
√

τ2)
√

2(w − 1) + O((w − 1)2).

(7.16)

The leading contribution comes from the t−1/2-neighborhood of w = 1, which is however
also a pole when n2 > n1. Therefore we have to remain on its left and we choose ρ =
1 − (2/t)1/2ε, ε > 0. After controlling the error terms, we make the change of variable
w = 1 + t−1/2

√
2W and take W = iR − ε for any given ε > 0. So, the leading contribution

of (7.14) is given by

(−1)n1−n2C2

C1

√
2

t

−1

2π i

∫

iR−ε

dW Wn1−n2e(τ1−τ2)W2+2(ξ1
√

τ1−ξ2
√

τ2)W . (7.17)
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Finally, changing the variable W = −w and multiplication by C1
√

2t1/C2 leads to the first
term in (7.3).

(2) Term coming from the second term in (3.29). After the change of variable v = ṽ − 1
we have

1

(2π i)2

∮

�1

dṽ

∮

�0,1−ṽ

dw
(w−1

w
)n1

( ṽ−1
ṽ

)n2

etf0,1(w)+t1/2f1,1(w)

etf0,2(ṽ)+t1/2f1,2(ṽ)

× 2ṽ − 1

w(ṽ + w − 1)(w − ṽ)
. (7.18)

The steep descent path for w is chosen as above, while for ṽ we just take a circle around
1 of radius smaller than (2/t)1/2ε. With the variables called ṽ = 1 + t−1/2

√
2V and w =

1 + t−1/2
√

2W , the leading contribution of (7.18) is

(−1)n1−n2C2

C1

√
2

t

1

(2π i)2

∮

|V |<ε

dV

×
∫

iR−ε

dW
eτ1W2+2ξ1

√
τ1W

eτ2V 2+2ξ2
√

τ2V

Wn1

V n2

1

W − V
. (7.19)

Finally, the change of variable W = −w1, V = −w2 and multiplying by C1
√

2t1/C2 leads
to third term in (7.3) (the part with 1/(w1 − w2)).

(3) Terms coming from the third term in (3.29). Recall that we have to set α = 2 and after
the change of variable v = ṽ − 1 we obtain

1

(2π i)2

∮

�0

dw

∮

�1,2−w

dṽ

× et1w(w−1
w

)n1

wx1

ṽx2

et2 ṽ( ṽ−1
ṽ

)n2

2ṽ − 1

w(w + ṽ − 2)(1 + ṽ − w)
. (7.20)

(3a) Term coming from the pole at ṽ = 1 of (7.20). In this case the situation is almost iden-
tical as in case (2). The only difference is in the last factor, in particular, after the change
of variables ṽ = 1 + t−1/2

√
2V and w = 1 + t−1/2

√
2W the last factor goes to 1/(W + V )

instead of 1/(W − V ). After the final change of variable is W = −w1, V = −w2 and multi-
plication by C1

√
2t1/C2 leads to third term in (7.3) (the part with 1/(w1 + w2)).

(3b) Term coming from the pole at ṽ = 2 − w of (7.20). This term reads

1

2π i

∮

�0

dw
et1w+t2(w−2)(2 − w)x2

wx1

(w−1
w

)n1

( 1−w
2−w

)n2

= 1

2π i

∮

�0

dw eth0(w)+t1/2h1(w)
(w−1

w
)n1

( 1−w
2−w

)n2
, (7.21)

where

h0(w) = (τ1 + τ2)w + τ2(ln(2 − w) − 2) − τ1 ln(w),

h1(w) = √
2τ1ξ1 ln(w) − √

2τ2ξ2 ln(2 − w).
(7.22)



976 A. Borodin et al.

There are two critical point of h0, namely

ω1 = 1, ω2 = 2τ1

τ1 + τ2
, both in [0,1]. (7.23)

The steep descent path passes by the critical point the closest to the origin. For τ1 < τ2, we
have ω2 < 1 and the steep descent analysis gives readily a contribution of order

C2

C1
eth0(ω2)−th0(1). (7.24)

It is easy to see that, with μ := τ2/τ1,

h0(ω2) − h0(1) = τ1(1 − μ)(1 + ln(2) − ln(μ + 1)) < 0,

for all μ > 1. (7.25)

Thus in the t → ∞ limit, the contribution goes to zero exponentially fast for τ1 < τ2. Finally,
consider τ1 > τ2. Then, 1 < ω2. We choose the path as in case (1), but this time the Taylor
series give

h0(w) = h0(1) + (τ2 − τ1)

2
(w − 1)2,

h1(w) = h0(1) + (ξ1
√

τ1 + ξ2
√

τ2)
√

2(w − 1) + O((w − 1)2).

(7.26)

Also, we have a different sign in the prefactor and a factor (−1)n2 in the term (w − 1)n1−n2 .
This leads to the second term in (7.3) and explains the differences with the first term of (7.3),
namely the (−1)n2+1 and the change ξ2 → −ξ2. �
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